Search results

Search for "organic semiconductors" in Full Text gives 30 result(s) in Beilstein Journal of Nanotechnology.

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • Many attempts have been made to enhance the photocatalytic activity and take better advantage of SnO2 for the NOx abatement, including the combination with other metal oxides [70], organic semiconductors [71], or metallic nanomaterials [72] to form a heterojunction/composite photocatalyst, and self
  • co-photocatalysts, including inorganic and organic semiconductors, is a practical approach to enhance the charge transfer efficacy for the photocatalytic process. The photocatalytic degradation of NOx over SnO2 as a host photocatalyst is reported to be considerably enhanced after the combination with
  • organic semiconductors such as graphitic carbon nitride (g-C3N4) [71]. When acting as an auxiliary photocatalyst, SnO2 promotes the photocatalytic activity of the primary material [38][70][75][76]. Wu et al. reported the visible-light-driven elimination of NO over hydrothermally synthesized BiOBr/SnO2 p–n
PDF
Album
Review
Published 21 Jan 2022

Nanoporous and nonporous conjugated donor–acceptor polymer semiconductors for photocatalytic hydrogen production

  • Zhao-Qi Sheng,
  • Yu-Qin Xing,
  • Yan Chen,
  • Guang Zhang,
  • Shi-Yong Liu and
  • Long Chen

Beilstein J. Nanotechnol. 2021, 12, 607–623, doi:10.3762/bjnano.12.50

Graphical Abstract
  • moiety as a strong electron-withdrawing group, has been widely used to design organic semiconductors for diverse applications, such as organic solar cells [85], organic light-emitting diodes [86], and organic field-effect transistors [87]. Researchers have also incorporated cyano moieties into the design
PDF
Album
Review
Published 30 Jun 2021

Interface interaction of transition metal phthalocyanines with strontium titanate (100)

  • Reimer Karstens,
  • Thomas Chassé and
  • Heiko Peisert

Beilstein J. Nanotechnol. 2021, 12, 485–496, doi:10.3762/bjnano.12.39

Graphical Abstract
  • at interfaces; strontium titanate; transition metal phthalocyanines; Introduction Interfaces between organic semiconductors and oxides are of increasing fundamental interest. Such interfaces determine key properties of a broad variety of electronic devices. Common examples are dye-sensitized solar
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2021

Growth of a self-assembled monolayer decoupled from the substrate: nucleation on-command using buffer layers

  • Robby Reynaerts,
  • Kunal S. Mali and
  • Steven De Feyter

Beilstein J. Nanotechnol. 2020, 11, 1291–1302, doi:10.3762/bjnano.11.113

Graphical Abstract
  • formation by acting as a physical barrier between the substrate and the assembling moiety, buffer layers are also widely used to study intrinsic electronic properties of functional organic systems such as organic semiconductors [32][33] and films of 1D/2D polymers [34][35][36][37] via electronic decoupling
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2020

Hybridization vs decoupling: influence of an h-BN interlayer on the physical properties of a lander-type molecule on Ni(111)

  • Maximilian Schaal,
  • Takumi Aihara,
  • Marco Gruenewald,
  • Felix Otto,
  • Jari Domke,
  • Roman Forker,
  • Hiroyuki Yoshida and
  • Torsten Fritz

Beilstein J. Nanotechnol. 2020, 11, 1168–1177, doi:10.3762/bjnano.11.101

Graphical Abstract
  • consequences for possible applications in molecular electronic devices. Low work function metals such as Al, Ca or Ba are typically used to achieve a low electron injection barrier, which is necessary to build high-performance n-type organic semiconductors [41]. However, these substrates suffer from a high
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2020

Templating effect of single-layer graphene supported by an insulating substrate on the molecular orientation of lead phthalocyanine

  • K. Priya Madhuri,
  • Abhay A. Sagade,
  • Pralay K. Santra and
  • Neena S. John

Beilstein J. Nanotechnol. 2020, 11, 814–820, doi:10.3762/bjnano.11.66

Graphical Abstract
  • specific device applications. Keywords: conducting atomic force microscopy (C-AFM); lead phthalocyanine (PbPc); molecular orientation; single-layer graphene; substrate effect; two-dimensional grazing incidence X-ray diffraction (2D-GIXRD); Introduction Organic semiconductors have been extensively used in
PDF
Album
Full Research Paper
Published 19 May 2020

Mobility of charge carriers in self-assembled monolayers

  • Zhihua Fu,
  • Tatjana Ladnorg,
  • Hartmut Gliemann,
  • Alexander Welle,
  • Asif Bashir,
  • Michael Rohwerder,
  • Qiang Zhang,
  • Björn Schüpbach,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2019, 10, 2449–2458, doi:10.3762/bjnano.10.235

Graphical Abstract
  • the determination of mobilities in macroscopic samples. Keywords: conducting atomic force microscopy; lateral charge transport; nanografting; organic semiconductor; self-assembled monolayer; Introduction Charge transport in organic semiconductors plays a central role in the field of molecular
  • SAMs yielded a rather high charge carrier mobility of 6.7 cm2·V−1·s−1. Although these studies represent a major step forward with regard to determining intrinsic charge carrier mobilities in organic semiconductors, it has to be noted that in this previous approach the conductive islands were formed in
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2019

Polyvinylpyrrolidone as additive for perovskite solar cells with water and isopropanol as solvents

  • Chen Du,
  • Shuo Wang,
  • Xu Miao,
  • Wenhai Sun,
  • Yu Zhu,
  • Chengyan Wang and
  • Ruixin Ma

Beilstein J. Nanotechnol. 2019, 10, 2374–2382, doi:10.3762/bjnano.10.228

Graphical Abstract
  • remarkable light absorption capacity [5] and the tunable band gap [6] of inorganic–organic lead halide perovskite crystals make them suitable for the production of organic semiconductors [7], photodetectors [8], and photovoltaics [5]. In 2009, Kojima et al. achieved a breakthrough in using mesoporous TiO2 as
PDF
Album
Full Research Paper
Published 05 Dec 2019

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • monolayer of organic semiconductors have become clear in recent research examples. Of course, further efforts regarding nanoscale design of sensing materials for better performance and selectivity have to be made. In many cases, sensor advancements can be implemented with the nanoarchitectonics
PDF
Album
Review
Published 16 Oct 2019

P3HT:PCBM blend films phase diagram on the base of variable-temperature spectroscopic ellipsometry

  • Barbara Hajduk,
  • Henryk Bednarski,
  • Bożena Jarząbek,
  • Henryk Janeczek and
  • Paweł Nitschke

Beilstein J. Nanotechnol. 2018, 9, 1108–1115, doi:10.3762/bjnano.9.102

Graphical Abstract
  • temperature changes. Characteristic temperatures determined from the slope changes of the Δ(T) plot appeared to be very good guess values for the phase transition temperatures. Keywords: non-linear optics; organic semiconductors; spectroscopic ellipsometry; theoretical modeling; thin films; Introduction The
PDF
Album
Full Research Paper
Published 05 Apr 2018

Electro-optical interfacial effects on a graphene/π-conjugated organic semiconductor hybrid system

  • Karolline A. S. Araujo,
  • Luiz A. Cury,
  • Matheus J. S. Matos,
  • Thales F. D. Fernandes,
  • Luiz G. Cançado and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2018, 9, 963–974, doi:10.3762/bjnano.9.90

Graphical Abstract
  • surface potential changes on the hybrid system. In summary, interface-induced organized structures atop 2D materials may have an important impact on both design and operation of π-conjugated nanomaterial-based hybrid systems. Keywords: DFT calculations; graphene; organic semiconductors; scanning probe
  • microscopy; self-assembly; Introduction Organic semiconductors offer a wide range of possible applications, from thin-film transistors to sensors and solar cells [1][2][3][4][5][6]. Their optical and electronic properties are strongly linked to intermolecular interaction parameters associated with molecular
  • ] and, thus, its optical properties are key to the successful development of devices. Since molecular packing and ordering influence optical properties of organic semiconductors [7][8][9][10][11][12][13], it is important to investigate whether the graphene-induced ordering affected the optical
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2018

Parylene C as a versatile dielectric material for organic field-effect transistors

  • Tomasz Marszalek,
  • Maciej Gazicki-Lipman and
  • Jacek Ulanski

Beilstein J. Nanotechnol. 2017, 8, 1532–1545, doi:10.3762/bjnano.8.155

Graphical Abstract
  • remarkable progress in synthesis of a variety of organic semiconductors, allowing one to design and to fabricate, so far on a laboratory scale, different organic electronic devices of satisfactory performance. However, a complete technology requires upgrading of fabrication procedures of all elements of
  • of molecular materials and enhanced processing conditions. Over the past 20 years, the work has been mainly dedicated to the selection and processing of organic semiconductors: either small molecules [1][2] or systems with high molecular weight [3][4]. Nevertheless, it should be pointed out that it
  • organic light-emitting diode (OLED) (10−6 g/m2 per day) [23]. Nevertheless, some of the organic semiconductors (mostly electron-transporting materials) require an encapsulation layer, in order to observe charge transport in the transistor architecture [24]. According to our knowledge, there is a limited
PDF
Album
Review
Published 28 Jul 2017

Light-induced magnetoresistance in solution-processed planar hybrid devices measured under ambient conditions

  • Sreetama Banerjee,
  • Daniel Bülz,
  • Danny Reuter,
  • Karla Hiller,
  • Dietrich R. T. Zahn and
  • Georgeta Salvan

Beilstein J. Nanotechnol. 2017, 8, 1502–1507, doi:10.3762/bjnano.8.150

Graphical Abstract
  • temperature and in low magnetic fields of several milliteslas [2]. Several organic semiconductors consisting of small molecules such as aluminium-tris(8-hydroxyquinoline) (Alq3) [3][4], pentacene [5], α-sexithiophene [6] or even conjugated polymers such as poly(N-vinyl carbazole) and poly (p-phenylene
PDF
Album
Supp Info
Letter
Published 21 Jul 2017

Spin-chemistry concepts for spintronics scientists

  • Konstantin L. Ivanov,
  • Alexander Wagenpfahl,
  • Carsten Deibel and
  • Jörg Matysik

Beilstein J. Nanotechnol. 2017, 8, 1427–1445, doi:10.3762/bjnano.8.143

Graphical Abstract
  • technologies, we will focus here on the spin processes from absorption to the generation of free charge carriers. The study of spins in organic semiconductors has a long-standing history, but their role in the fundamental processes in OSC has only very recently been highlighted in key publications [29][30][31
  • ]. Also, exploiting the unique properties of electronic spin interactions, the development of novel routes to enhance both the power conversion efficiency and lifespan of solar cells should be possible. State-of-the-art OSCs consist of the combination of two organic semiconductors, (electron) donor and
  • yield in some organic semiconductors [39]. It can therefore be seen as down conversion and so-called multiexciton generation. An enhanced power conversion efficiency is then foreseen, with the premise that fission of these high-energy singlet excitations into two independent triplets is quantitative
PDF
Album
Review
Published 11 Jul 2017

Charge transport in organic nanocrystal diodes based on rolled-up robust nanomembrane contacts

  • Vineeth Kumar Bandari,
  • Lakshmi Varadharajan,
  • Longqian Xu,
  • Abdur Rehman Jalil,
  • Mirunalini Devarajulu,
  • Pablo F. Siles,
  • Feng Zhu and
  • Oliver G. Schmidt

Beilstein J. Nanotechnol. 2017, 8, 1277–1282, doi:10.3762/bjnano.8.129

Graphical Abstract
  • space-charge-limited current under different conditions, for instance, temperature and bias. Keywords: charge transport; nanomembrane; organic diode; organic nanocrystal; rolled-up nanotechnology; Introduction Organic semiconductors have been widely applied in developing optoelectronic devices
PDF
Album
Letter
Published 19 Jun 2017

Nanoantenna-assisted plasmonic enhancement of IR absorption of vibrational modes of organic molecules

  • Alexander G. Milekhin,
  • Olga Cherkasova,
  • Sergei A. Kuznetsov,
  • Ilya A. Milekhin,
  • Ekatherina E. Rodyakina,
  • Alexander V. Latyshev,
  • Sreetama Banerjee,
  • Georgeta Salvan and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2017, 8, 975–981, doi:10.3762/bjnano.8.99

Graphical Abstract
  • . Keywords: cobalt phthalocyanine; cortisol; localized surface plasmon resonance; metal nanoantennas; Raman scattering; surface-enhanced infrared absorption (SEIRA); Introduction Organic semiconductors have been extensively investigated during the past few decades due to their wide range of applications in
  • the last decade, organic semiconductors gained the attention of the spintronics community as these organic semiconductors have been considered as good candidates for spin transport. The most interesting property of organic semiconductors for spintronic applications is the weak spin–scattering
PDF
Album
Full Research Paper
Published 03 May 2017

Thermo-voltage measurements of atomic contacts at low temperature

  • Ayelet Ofarim,
  • Bastian Kopp,
  • Thomas Möller,
  • León Martin,
  • Johannes Boneberg,
  • Paul Leiderer and
  • Elke Scheer

Beilstein J. Nanotechnol. 2016, 7, 767–775, doi:10.3762/bjnano.7.68

Graphical Abstract
  • , which are partially not explored thoroughly yet. This includes solid-state semiconducting devices [1] and organic semiconductors, ultrathin metal wires or single-molecule junctions. In particular, the thermopower has become a property of utmost interest because it is decisive for the conversion of
PDF
Album
Full Research Paper
Published 30 May 2016

Charge injection and transport properties of an organic light-emitting diode

  • Peter Juhasz,
  • Juraj Nevrela,
  • Michal Micjan,
  • Miroslav Novota,
  • Jan Uhrik,
  • Lubica Stuchlikova,
  • Jan Jakabovic,
  • Ladislav Harmatha and
  • Martin Weis

Beilstein J. Nanotechnol. 2016, 7, 47–52, doi:10.3762/bjnano.7.5

Graphical Abstract
  • efficacy (60–70 lm/W), which is the current benchmark for novel light sources [4]. Organic semiconductors have zero doping level and very low intrinsic charge density, therefore all charges in OLED device are injected from the electrodes. As a result, the energy band diagram analysis plays a key role in
  • improvement. In details, the organic–organic and metal–organic interfaces determine injection properties, whereas the conductivities of organic layers limit the charge transport properties. Charge transport in organic semiconductors has been widely studied by electrical characterization techniques such as
PDF
Album
Full Research Paper
Published 14 Jan 2016

Transformations of PTCDA structures on rutile TiO2 induced by thermal annealing and intermolecular forces

  • Szymon Godlewski,
  • Jakub S. Prauzner-Bechcicki,
  • Thilo Glatzel,
  • Ernst Meyer and
  • Marek Szymoński

Beilstein J. Nanotechnol. 2015, 6, 1498–1507, doi:10.3762/bjnano.6.155

Graphical Abstract
  • titanium dioxide. The chosen perylene derivative, i.e., PTCDA, is often considered as a model planar-stacking organic molecule for organic semiconductors [19][20][21][22][23][24][25][26], similar to how the CO molecule is regarded as a model for small inorganic molecules. There are several important
PDF
Album
Full Research Paper
Published 10 Jul 2015

Current–voltage characteristics of manganite–titanite perovskite junctions

  • Benedikt Ifland,
  • Patrick Peretzki,
  • Birte Kressdorf,
  • Philipp Saring,
  • Andreas Kelling,
  • Michael Seibt and
  • Christian Jooss

Beilstein J. Nanotechnol. 2015, 6, 1467–1484, doi:10.3762/bjnano.6.152

Graphical Abstract
  • binding energy can be high due to the low dielectric constant of the organic semiconductors and can exceed 1 eV. Charge separation is typically hindered by a high exciton binding energy, however, it can be facilitated at a heterojunction due to formation of a more loosely bound exciton–polaron pair, which
  • semiconductors, respectively. This large difference is due to the fact that the typical mobility in organic and inorganic semiconductors differs by several orders of magnitude. Given that the mobility in the PCMO–STNO system is larger than that of organic semiconductors, a diffusion length on the order of that
  • of organic semiconductors is expected. However, the situation may be different for excited charge carriers in a correlated material system as the applicability of the simple Einstein relation is questionable: Here, the assumption of a non-degenerate system in thermal equilibrium may not hold (see
PDF
Album
Full Research Paper
Published 07 Jul 2015

Charge carrier mobility and electronic properties of Al(Op)3: impact of excimer formation

  • Andrea Magri,
  • Pascal Friederich,
  • Bernhard Schäfer,
  • Valeria Fattori,
  • Xiangnan Sun,
  • Timo Strunk,
  • Velimir Meded,
  • Luis E. Hueso,
  • Wolfgang Wenzel and
  • Mario Ruben

Beilstein J. Nanotechnol. 2015, 6, 1107–1115, doi:10.3762/bjnano.6.112

Graphical Abstract
  • . Keywords: charge carrier mobility; HOMO–LUMO energy levels; photophysical characterization; TFT devices; tris-(1-oxo-1H-phenalen-9-olate)aluminum(III); Introduction Since the field of organic electronics has emerged, interest in organic semiconductors (OSCs) has substantially increased [1]. The efficiency
PDF
Album
Full Research Paper
Published 05 May 2015

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

  • Shanka Walia and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2015, 6, 546–558, doi:10.3762/bjnano.6.57

Graphical Abstract
  • vesicles without any appreciable amount of change in the NP size and shape. In a similar way, Chen et al. [59] reported the synthesis of multifunctional magnetic and fluorescent nanocolloids. The synthesis began with the preparation of either inorganic QDs or organic semiconductors. These nanocomposites
PDF
Album
Review
Published 24 Feb 2015

Optical properties and electrical transport of thin films of terbium(III) bis(phthalocyanine) on cobalt

  • Peter Robaschik,
  • Pablo F. Siles,
  • Daniel Bülz,
  • Peter Richter,
  • Manuel Monecke,
  • Michael Fronk,
  • Svetlana Klyatskaya,
  • Daniel Grimm,
  • Oliver G. Schmidt,
  • Mario Ruben,
  • Dietrich R. T. Zahn and
  • Georgeta Salvan

Beilstein J. Nanotechnol. 2014, 5, 2070–2078, doi:10.3762/bjnano.5.215

Graphical Abstract
  • the Q and B band, of phthalocyanines are highlighted in Figure 2. They correspond to ligand-related π–π* transitions [15]. For organic semiconductors we can consider the relative magnetic permeability to be µr ≈ 1. Thus, we can easily determine the optical constants from the diagonal elements εii of
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2014

CoPc and CoPcF16 on gold: Site-specific charge-transfer processes

  • Fotini Petraki,
  • Heiko Peisert,
  • Johannes Uihlein,
  • Umut Aygül and
  • Thomas Chassé

Beilstein J. Nanotechnol. 2014, 5, 524–531, doi:10.3762/bjnano.5.61

Graphical Abstract
  • allow the discussion of site-specific charge-transfer processes. Keywords: Auger parameter; charge transfer; interfaces; organic semiconductors; photoemission; phthalocyanines; polarization screening; Introduction In order to develop and improve the performance of organic-based electronic devices an
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2014

High-resolution electrical and chemical characterization of nm-scale organic and inorganic devices

  • Pierre Eyben

Beilstein J. Nanotechnol. 2013, 4, 318–319, doi:10.3762/bjnano.4.35

Graphical Abstract
  • emergence of electronic components based on organic semiconductors. The organic materials used nowadays are typically made of single molecules in highly ordered assemblies or of polymeric semiconductors in thin films. In recent years, an extensive set of organic-based prototypes (transistors, sensors
PDF
Editorial
Published 16 May 2013
Other Beilstein-Institut Open Science Activities